package qwen25vl import ( "math" "github.com/ollama/ollama/fs" "github.com/ollama/ollama/kvcache" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/model/input" ) type TextOptions struct { ctxLen, hiddenSize, numHeads, numKVHeads int eps, ropeBase, ropeScale float32 ropeDim, defaultContextLen uint32 } type TextModel struct { TokenEmbedding *nn.Embedding `gguf:"token_embd"` Layers []Layer `gguf:"blk"` OutputNorm *nn.RMSNorm `gguf:"output_norm"` Output *nn.Linear `gguf:"output,alt:token_embd"` *TextOptions } func NewTextModel(c fs.Config) *TextModel { m := TextModel{ Layers: make([]Layer, c.Uint("block_count")), TextOptions: &TextOptions{ ctxLen: int(c.Uint("context_length")), hiddenSize: int(c.Uint("embedding_length")), numHeads: int(c.Uint("attention.head_count")), numKVHeads: int(c.Uint("attention.head_count_kv")), eps: c.Float("attention.layer_norm_rms_epsilon"), ropeBase: c.Float("rope.freq_base"), ropeScale: c.Float("rope.freq_scale", 1), ropeDim: c.Uint("rope.dimension_count", 128), defaultContextLen: c.Uint("context_length", 128000), }, } return &m } // SelfAttention implements the multi-head self-attention mechanism // with separate projections for query, key, value and output transformations type SelfAttention struct { Query *nn.Linear `gguf:"attn_q"` Key *nn.Linear `gguf:"attn_k"` Value *nn.Linear `gguf:"attn_v"` Output *nn.Linear `gguf:"attn_output"` } func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor { batchSize := hiddenState.Dim(1) headDim := opts.hiddenSize / opts.numHeads q := sa.Query.Forward(ctx, hiddenState) q = q.Reshape(ctx, headDim, opts.numHeads, batchSize) q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, 2, opts.ropeBase, opts.ropeScale, ml.WithContextLen(opts.defaultContextLen)) k := sa.Key.Forward(ctx, hiddenState) k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize) k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, 2, opts.ropeBase, opts.ropeScale, ml.WithContextLen(opts.defaultContextLen)) v := sa.Value.Forward(ctx, hiddenState) v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize) scaleFactor := 1.0 / math.Sqrt(float64(headDim)) kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache) kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize) return sa.Output.Forward(ctx, kqv) } // Shift applies rotary position embeddings to the key tensor for causal attention caching func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key.RoPE(ctx, shift, nil, m.ropeDim, 2, m.ropeBase, m.ropeScale, ml.WithContextLen(m.defaultContextLen)), nil } // MLP implements the feed-forward network component with SwiGLU activation type MLP struct { Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` Gate *nn.Linear `gguf:"ffn_gate"` } func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor { // Apply SwiGLU activation gating hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState)) // Project back to hidden dimension return mlp.Down.Forward(ctx, hiddenState) } // Layer represents a single transformer layer combining self-attention and feed-forward components type Layer struct { AttentionNorm *nn.RMSNorm `gguf:"attn_norm"` SelfAttention *SelfAttention MLPNorm *nn.RMSNorm `gguf:"ffn_norm"` MLP *MLP } func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor { // Self-attention branch with residual connection residual := hiddenState hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps) hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts) // In the final layer (outputs != nil), optimize by pruning to just the token positions // we need logits for. if outputs != nil { hiddenState = hiddenState.Rows(ctx, outputs) residual = residual.Rows(ctx, outputs) } hiddenState = hiddenState.Add(ctx, residual) // Feed-forward branch with residual connection residual = hiddenState hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps) hiddenState = l.MLP.Forward(ctx, hiddenState, opts) return hiddenState.Add(ctx, residual) } func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) (ml.Tensor, error) { // Initial token embedding hiddenStates := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx) for _, mi := range batch.Multimodal { img := mi.Multimodal[0].Tensor ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1)))) } // Process through transformer layers for i, layer := range m.Layers { cache.SetLayer(i) var lastLayerOutputs ml.Tensor if i == len(m.Layers)-1 { lastLayerOutputs = outputs } hiddenStates = layer.Forward(ctx, hiddenStates, positions, lastLayerOutputs, cache, m.TextOptions) } hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps) return m.Output.Forward(ctx, hiddenStates), nil }