package llama4 import ( "cmp" "math" "github.com/ollama/ollama/fs" "github.com/ollama/ollama/kvcache" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/model/input" ) type TextAttention struct { Query *nn.Linear `gguf:"attn_q"` Key *nn.Linear `gguf:"attn_k"` Value *nn.Linear `gguf:"attn_v"` Output *nn.Linear `gguf:"attn_output"` RopeFactors ml.Tensor `gguf:"rope_factors"` } func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions, attentionScales ml.Tensor, cache kvcache.Cache, useRope bool, opts *TextOptions) ml.Tensor { batchSize, headDim := hiddenStates.Dim(1), cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads) query := sa.Query.Forward(ctx, hiddenStates) key := sa.Key.Forward(ctx, hiddenStates) value := sa.Value.Forward(ctx, hiddenStates) query = query.Reshape(ctx, headDim, opts.numHeads, batchSize) key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize) value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize) if useRope { query = query.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale) key = key.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale) } if opts.useQKNorm { query = query.RMSNorm(ctx, nil, opts.eps) key = key.RMSNorm(ctx, nil, opts.eps) } if attentionScales != nil && !useRope { query = query.Mul(ctx, attentionScales) } attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), cache) attention = attention.Reshape(ctx, opts.hiddenSize, batchSize) return sa.Output.Forward(ctx, attention) } type TextMLP struct { Gate *nn.Linear `gguf:"ffn_gate"` Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` } func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor { hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates)) return mlp.Down.Forward(ctx, hiddenStates) } type TextExperts struct { Gate ml.Tensor `gguf:"ffn_gate_exps.weight"` Up ml.Tensor `gguf:"ffn_up_exps.weight"` Down ml.Tensor `gguf:"ffn_down_exps.weight"` } func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor { experts := routerLogits.TopK(ctx, opts.numExpertsUsed) scores := routerLogits.Sigmoid(ctx).Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, experts) hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1)) hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed) hiddenStates = hiddenStates.Mul(ctx, scores) upStates := e.Up.MulmatID(ctx, hiddenStates, experts) gateStates := e.Gate.MulmatID(ctx, hiddenStates, experts) downStates := e.Down.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts) nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2)) for i := 1; i < opts.numExpertsUsed; i++ { nextStates.Add(ctx, downStates.View(ctx, i*downStates.Stride(1), hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))) } return nextStates } // TextSharedExpert is TextMLP with different tensor names type TextSharedExpert struct { Gate *nn.Linear `gguf:"ffn_gate_shexp"` Up *nn.Linear `gguf:"ffn_up_shexp"` Down *nn.Linear `gguf:"ffn_down_shexp"` } func (mlp *TextSharedExpert) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor { hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates)) return mlp.Down.Forward(ctx, hiddenStates) } type TextMOE struct { Router *nn.Linear `gguf:"ffn_gate_inp"` Experts *TextExperts SharedExpert *TextSharedExpert } func (moe *TextMOE) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor { hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2) hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize) routerLogits := moe.Router.Forward(ctx, hiddenStates) sharedStates := moe.SharedExpert.Forward(ctx, hiddenStates, opts) routedStates := moe.Experts.Forward(ctx, hiddenStates, routerLogits, opts) return sharedStates.Add(ctx, routedStates) } type TextFeedForward interface { Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor } type TextLayer struct { AttentionNorm *nn.LayerNorm `gguf:"attn_norm"` Attention *TextAttention FFNNorm *nn.LayerNorm `gguf:"ffn_norm"` FeedForward TextFeedForward } func (d *TextLayer) Forward(ctx ml.Context, hiddenStates, positions, attentionScales, outputs ml.Tensor, cache kvcache.Cache, useRope bool, opts *TextOptions) ml.Tensor { residual := hiddenStates // self attention hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps) hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, attentionScales, cache, useRope, opts) if outputs != nil { hiddenStates = hiddenStates.Rows(ctx, outputs) residual = residual.Rows(ctx, outputs) } hiddenStates = hiddenStates.Add(ctx, residual) residual = hiddenStates hiddenStates = d.FFNNorm.Forward(ctx, hiddenStates, opts.eps) hiddenStates = d.FeedForward.Forward(ctx, hiddenStates, opts) return residual.Add(ctx, hiddenStates) } type TextOptions struct { hiddenSize int numHeads, numKVHeads, headDim int numExperts, numExpertsUsed int ropeDim int ropeBase, ropeScale float32 eps float32 interleaveLayerStep int noRopeInterval int useQKNorm bool attentionTemperatureTuning bool attentionScale float64 attentionFloorScale float64 } type TextModel struct { Layers []TextLayer `gguf:"blk"` TokenEmbedding *nn.Embedding `gguf:"token_embd"` OutputNorm *nn.LayerNorm `gguf:"output_norm"` Output *nn.Linear `gguf:"output,alt:token_embd"` *TextOptions } func newTextModel(c fs.Config) *TextModel { layers := make([]TextLayer, c.Uint("block_count")) interleaveLayerStep := c.Uint("interleave_moe_layer_step", 1) for i := range layers { if (i+1)%int(interleaveLayerStep) == 0 { layers[i] = TextLayer{FeedForward: &TextMOE{}} } else { layers[i] = TextLayer{FeedForward: &TextMLP{}} } } return &TextModel{ Layers: layers, TextOptions: &TextOptions{ hiddenSize: int(c.Uint("embedding_length")), numHeads: int(c.Uint("attention.head_count")), numKVHeads: int(c.Uint("attention.head_count_kv")), headDim: int(c.Uint("attention.head_dim", 128)), numExperts: int(c.Uint("expert_count")), numExpertsUsed: int(c.Uint("expert_used_count")), ropeDim: int(c.Uint("rope.dimension_count")), ropeBase: c.Float("rope.freq_base"), ropeScale: c.Float("rope.freq_scale", 1), eps: c.Float("attention.layer_norm_rms_epsilon"), interleaveLayerStep: int(c.Uint("interleave_moe_layer_step", 1)), noRopeInterval: int(c.Uint("no_rope_interval", 4)), useQKNorm: c.Bool("use_qk_norm", true), attentionTemperatureTuning: c.Bool("attention.temperature_tuning", true), attentionScale: float64(c.Float("attention.scale", 0.1)), attentionFloorScale: float64(c.Float("attention.floor_scale", 8192)), }, } } func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor { hiddenStates := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx) for _, mi := range batch.Multimodal { img := mi.Multimodal[0].Tensor ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1)))) } var attentionScales ml.Tensor if m.attentionTemperatureTuning { scales := make([]float32, len(batch.Positions)) for i, p := range batch.Positions { scales[i] = float32(math.Log(math.Floor(((float64(p)+1.0)/float64(m.attentionFloorScale))+1.0))*m.attentionScale + 1.0) } var err error attentionScales, err = ctx.Input().FromFloatSlice(scales, 1, 1, len(scales)) if err != nil { panic(err) } } for i, layer := range m.Layers { cache.SetLayer(i) wc := cache.(*kvcache.WrapperCache) wc.SetLayerType(1) useChunkedAttention := (i+1)%m.noRopeInterval != 0 if useChunkedAttention { wc.SetLayerType(0) } var lastLayerOutputs ml.Tensor if i == len(m.Layers)-1 { lastLayerOutputs = outputs } hiddenStates = layer.Forward(ctx, hiddenStates, positions, attentionScales, lastLayerOutputs, cache, useChunkedAttention, m.TextOptions) } hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps) return m.Output.Forward(ctx, hiddenStates) } func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key.RoPE(ctx, shift, m.Layers[layer].Attention.RopeFactors, uint32(0), uint32(m.ropeDim), m.ropeBase, m.ropeScale), nil }