You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
4.5 KiB
160 lines
4.5 KiB
3 weeks ago
|
package qwen25vl
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"fmt"
|
||
|
"image"
|
||
|
"slices"
|
||
|
|
||
|
"github.com/ollama/ollama/fs"
|
||
|
"github.com/ollama/ollama/kvcache"
|
||
|
"github.com/ollama/ollama/ml"
|
||
|
"github.com/ollama/ollama/model"
|
||
|
"github.com/ollama/ollama/model/input"
|
||
|
)
|
||
|
|
||
|
type Model struct {
|
||
|
model.Base
|
||
|
model.BytePairEncoding
|
||
|
|
||
|
*TextModel
|
||
|
*VisionModel `gguf:"v,vision"`
|
||
|
|
||
|
ImageProcessor
|
||
|
}
|
||
|
|
||
|
// Implement MultimodalProcessor interface
|
||
|
var _ model.MultimodalProcessor = (*Model)(nil)
|
||
|
|
||
|
func New(c fs.Config) (model.Model, error) {
|
||
|
m := &Model{
|
||
|
BytePairEncoding: model.NewBytePairEncoding(
|
||
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||
|
&model.Vocabulary{
|
||
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
||
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
||
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
||
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
||
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||
|
EOS: append(
|
||
|
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
||
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
||
|
),
|
||
|
},
|
||
|
),
|
||
|
TextModel: NewTextModel(c),
|
||
|
VisionModel: newVisionModel(c),
|
||
|
ImageProcessor: newImageProcessor(c),
|
||
|
}
|
||
|
|
||
|
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
|
||
|
|
||
|
return m, nil
|
||
|
}
|
||
|
|
||
|
func (m *Model) PixelValues(ctx ml.Context, multimodalData []byte) (ml.Tensor, *Grid, error) {
|
||
|
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
||
|
if err != nil {
|
||
|
return nil, nil, err
|
||
|
}
|
||
|
|
||
|
f32s, grid, err := m.ImageProcessor.ProcessImage(image)
|
||
|
if err != nil {
|
||
|
return nil, nil, err
|
||
|
}
|
||
|
|
||
|
// Calculate tensor dimensions
|
||
|
patchDim := m.ImageProcessor.numChannels * m.ImageProcessor.temporalPatchSize *
|
||
|
m.ImageProcessor.patchSize * m.ImageProcessor.patchSize
|
||
|
numPatches := grid.Temporal * grid.Height * grid.Width
|
||
|
|
||
|
pixelValues, err := ctx.Input().FromFloatSlice(f32s, patchDim, numPatches)
|
||
|
if err != nil {
|
||
|
return nil, nil, fmt.Errorf("failed to create tensor from image: %w", err)
|
||
|
}
|
||
|
|
||
|
return pixelValues, grid, nil
|
||
|
}
|
||
|
|
||
|
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
|
||
|
if len(m.VisionModel.Layers) == 0 {
|
||
|
return nil, model.ErrNoVisionModel
|
||
|
}
|
||
|
|
||
|
pixels, grid, err := m.PixelValues(ctx, multimodalData)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
visionOutputs := m.VisionModel.Forward(ctx, pixels, grid)
|
||
|
return []input.Multimodal{{Tensor: visionOutputs}}, nil
|
||
|
}
|
||
|
|
||
|
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
|
||
|
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||
|
var result []input.Input
|
||
|
|
||
|
var (
|
||
|
imageToken int32 = 151655
|
||
|
visionStartToken int32 = 151652
|
||
|
visionEndToken int32 = 151653
|
||
|
)
|
||
|
|
||
|
nImg := 0
|
||
|
for _, inp := range inputs {
|
||
|
if inp.Multimodal == nil {
|
||
|
// If not a multimodal input, add it to the result unchanged
|
||
|
result = append(result, inp)
|
||
|
} else {
|
||
|
// Adding the 'Picture' prefix is a hack, at the time of writing there is no way to prefix
|
||
|
// the image tokens with a prompt, so we add a prefix here
|
||
|
nImg++
|
||
|
pre, err := m.Encode(fmt.Sprintf(" Picture %d: ", nImg), true)
|
||
|
if err != nil {
|
||
|
return nil, fmt.Errorf("failed to encode image prompt: %w", err)
|
||
|
}
|
||
|
for i := range pre {
|
||
|
result = append(result, input.Input{Token: pre[i]})
|
||
|
}
|
||
|
|
||
|
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
|
||
|
|
||
|
// First add the vision start token
|
||
|
result = append(result, input.Input{Token: visionStartToken, SameBatch: patchesPerChunk + 1})
|
||
|
|
||
|
// Add the image token with the multimodal tensor data at the first position
|
||
|
result = append(result, input.Input{
|
||
|
Token: imageToken,
|
||
|
Multimodal: inp.Multimodal,
|
||
|
MultimodalHash: inp.MultimodalHash,
|
||
|
})
|
||
|
|
||
|
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
|
||
|
result = append(result, slices.Repeat([]input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
|
||
|
|
||
|
result = append(result, input.Input{Token: visionEndToken})
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return result, nil
|
||
|
}
|
||
|
|
||
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||
|
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
|
||
|
}
|
||
|
|
||
|
func init() {
|
||
|
model.Register("qwen25vl", New)
|
||
|
}
|